Year 5 Maths Knowledge Organisers Autumn

Vocabulary

selection
Add
Plus
Total
$>$ Sum
$>$ Altogether
$>$ Equals
$>$ Tens
$>$ Ones
$>$ Hundreds
$>$ Subtract
$>$ Minus
$>$ Take away
$>$ Regroup

Colu	nn	add	tio		
exam					
	4	5	8	6	4
+	2	3	4	9	7
	6	9	3	6	1
		1	1	1	

Add and subtract mentally
1.3 digit and ones

Circle the ones and subtract

$$
384-3=381
$$

$$
4-3=1
$$

2. 3-digits and tens

Circle the tens and add $839+60=899$ $3+6=9$
3.3-digit and hundreds Circle the hundreds $649-400=249$

$$
6-4=2
$$

Prove all with resources and drawings in school. E.g.
$243-30=213$

Mental addition and subtraction bridging
$46+7=53$

* Get to the next ten or hundred and then add the rest.
E.g. $394-40=$
$404+30=434$

Column subtraction example

	3	5	λ^{1}	13	4^{1}
		3	4	7	6
	3	2	2	6	6

Column subtraction (with

 regrouping)875-287= 589
$>$ Start with ones, 5-7, you cannot do so regroup by taking one ten from the 7 , leaving 6 tens, and put in the ones column to make 15. 15-6 = 9
\rightarrow Next, the tens. 6-8, you cannot do so regroup by taking one of the hundreds, leaving 7 hundred, and put it in the tens column to make 16.

$$
16-8=8
$$

$>$ Finally, $7-2=5$

HTO

8^{1675}

- $\quad \underline{287}$

589

You cannot do 5 7 so go to the tens column. Take a ten make 15 in the ones column.

Vocabulary
$>$ Multiply
>Multiplication
$>$ Lots of
$>$ Times

- Division
$>$ Grouping
$>$ Sharing
- Arrays

Short division
$217 \div 7=31$

1. This division is quicker because you are dividing by a times table up to 12. This example is dividing by 7 .
2. Write in a bus stop $7 \longdiv { 2 1 7 }$
3. Look at the first digit in 217 . How many 7 s are in 2? Zero.

$$
\frac{0}{217}
$$

4. Look at the next digit with the 2. How many 7s in 21? Three. 031 7217
5. How many 7 s in 7 ? One.

Apply times tables
If you know $2 \times 8=16$, then you know...

$2 \times 8=16$	20 has a o so your answer will have 1 zero as
it is 10x	
greater	

Important facts

Anything $x 0$ is always 0 as you do not have any groups.

What is a factor?

- A factor is a number that goes into another number.
- LCF is when you compare 2 or more numbers list their factors and identify what factor is common between them. The highest value is the HCF.

Top tip - list the factors as pairs and start from 1 then go to 2,3 , etc.

Factors for 16		Factors for 12		What is the HCF for 16
1	16	1	12	4 is the HCF.
		2	6	
2	8	3	4	2 is a common factor but it isn't the highest.
4	4			

E.g. $(16-10) \div 3 \equiv$?

1. Brackets $1^{\text {st, }}$, so $16-10=6$
2. Then, $6 \div 3=2$
Multiplication and

division Y/5/6 | so, (16-10) $\div 3$ |
| :--- |
| equals 2. |

Order of operations
Remember BODMAS
B-brackets
O - orders (squared or cubed)

D-division
M - multiplication
A - addition
S-subtraction
Follow this order to

Long division
 $6786 \div 29=234$
 $2 9 \longdiv { 6 7 8 6 }$

HTO
324
$\times 13$
2. Start with multiplying the 3 in 13 with the ones column. So, $3 \times 4=12$. Carry the 1 in the number 12 into the tens column. \square
3. Move onto 3×2 (the tens column) and add the extra 1 that you carried. $3 \times 2=6$, add $1=7$
4. Then, 3×3 (in the hundreds column), which is 9 HTO
5. You have multiplied the 3 in 13 , now move onto the 1 ten in 13.
6. Put a zero (0) in the ones column as we are x by 10 not 1 .

7. Then follow the same process described in the previous Steps but multiplying each digit by 1 instead ($1 \times 4,1 \times 2,1 \times 3$)
8. Finally, $972+3240=4212$. Use the column method (see the addition and subtraction KO for support)

1. You don't know the $29 x$ table? Calculate the first 5 numbers in the $29 x$ table by adding 29 five times.

Vocabulary
$>$ Fraction
$>$ Part:
$>$ Whole
$>$ Equal
$>$ Share
$>$ Half
$>$ Quarter
$>$ Third
$>$ Equivalent
$>$ Numerator
$>$ Denominator
$>$ Proper Fraction
$>$ Improper Fraction
$>$ Factor
$>$ Highest Common Factor
$>$ Lowest Common Multiple
$>$ Simplify
$>$ Simplest Form
$>$ Mixed Number
$>$ Whole Number
Subtract fractions
Lowest common multiple
$8=8,16,24,32,40$
$5=5,10,15,20,25,30,35,40$
$\frac{7}{8}-\frac{3}{5}$
$\times 5\left(\frac{35}{40}-\frac{24}{40}\right) \times 8=\frac{11}{40}$

Add Fractions

$$
\frac{4}{5}+\frac{2}{3}
$$

$$
\begin{aligned}
& \text { 1. Find a common multiple of } \\
& 5 \text { and } 3 \\
& \left.\quad \begin{array}{l}
\frac{\text { e.g. } 15}{4} \\
\times 3\left(\frac{2}{3}\right. \\
+\frac{2}{15}
\end{array}\right) \times 5
\end{aligned}
$$

Whatever you do to the top
you must do to the bottom

$$
3 .
$$

$$
\left\{\begin{array}{c}
x 3\left(\frac{4}{5}+\frac{2}{3}\right) x 5 \\
\left.\frac{12}{15}+\frac{10}{15}\right) \\
=\frac{22}{15}
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\text { Divide fractions }}{\frac{4}{7} \div \frac{2}{5}} \\
& \begin{aligned}
\frac{\text { Stay Change }}{\frac{4}{7}} \times \frac{5}{2} & =\frac{20}{14} \\
& =1 \frac{6}{14} \\
& =1 \frac{3}{7}
\end{aligned}
\end{aligned}
$$

Multiply Fractions

$$
\frac{5}{8} \times \frac{3}{5}
$$

Times the top AND times the bottom
$\frac{5 \times 3}{8 \times 5}$

$$
=\frac{15}{40}
$$

Vocabulary
Bar chart
$>$ Pictogram
> Frequency table
$>$ Tally chart
> Pie chart
$>$ Discrete data
> Continuous data
> Line graph
> Sum
> Difference
> Comparison
> Interpret
$>$ Mean
$>$ Average

Click here to
return to
selection
page

Line graph

Pie charts
Line graphs are used to show changes to a measurement over time.

It is used for continuous data (numbers that are not fixed)
A line graph to show the length of shadows over time

To find values on a line graph, your child must use a ruler to draw lines to find the corresponding value.
For example, what time was the length of the shadow 25 cm during April?
A line graph to show the length of shadows over time

Mean is when you add up all the values and divide it by the total number of values.

Children should use what
A pie chart to show children's favourite sports they know from previous years.

Use these fractions and the total to find out different values

4 children were asked in total.
Swimming $=\frac{1}{2}$ so $\frac{1}{2}$ of $24=12$ children Netball $=\frac{1}{4}$ so $\frac{1}{4}$ of $24=6$ children Football $=\frac{1}{8}$ so $\frac{1}{8}$ of $24=3$ children Gymnastics $=\frac{1}{8}$ so $\frac{1}{8}$ of $24=3$ children

Bar chart

Most popular forms of transport

Scale (counting in 2s) the value of a bar.

- To draw a bar chart, the children must decide on a apart and the same thickness.
- To interpret a bar chart, children must draw a line to check suitable scale, make sure the bars are an equal distance

Vocabulary
X-axis
$>Y$-axis
$>$ Coordinate
$>$ Quadrant
$>$ Reflection
$>$ Mirror line
$>$ Translation
$>$ Horizontal
$>$ Vertical

Plotting a coordinate

Click here to return to selection

Graph

A coordinate is a point on the graph. This point is $(4,3)$.

Translation

Translate the shape 4 squares right and 1 down

Position and direction
Y5/6

Reflection
Work in a logical order and work around the shape
Start closest to the mirror line. Count towards the shape and then return to the mirror line and count the same the other way. Move around the shape continuing to count the number of squares

1. Start with 1 corner and jump 4 squares right, and then 2 down. Draw a cross.

Move to the next corner and repeat the method, drawing a cross.

3. Repeat the method with the final two sides and draw your shape.

Missing coordinates

Shapes can be shown on unmarked grids.

Point a is in the same position along the x-axis as $(5,2)$ and in the same position on the y-axis as $(7,9)$. So, $a=(5,9)$

Point b is in the same position on the y axis as $(10,4)$. Both triangles will have the same width. The width of the righthand triangle is 3 . This means that the width of the left-hand triangle is also 3 .

So, $\mathbf{b}=(\mathbf{2}, 4)$

